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H
arvesting energy from photons is
of tremendous societal importance
since it contributes to reduce the

carbon footprint. In common photovoltaic
devices, the conversion from photons into
electrical voltage is accomplished exploit-
ing the in-built electric field at the inter-
face of a p- and n-doped semiconductor to
separate the photogenerated electron�
hole pairs and originate a forward photo-
voltage. However, the intrinsic band gap
of standard semiconductors restricts the
photoresponsivity of these devices to
specific light bandwidths. To harvest elec-
tricity over a wide range of the sun light
spectrum, the multijunction design of
stacked p�n interfaces tuned to different
bandwidths has been proposed.1 Though
these tandem solar cells display an im-
proved light-harvesting efficiency,2 they
are typically brittle, heavy, and therefore
difficult to implement in future flexible
electronic devices.
Unlike conventional semiconductor ma-

terials, pristine single- and few-layer graphene
(FLG) materials have no band gap.3�6 The
gapless energy dispersion allows electron�
hole pairs to be generated over a broad
light bandwidth from UV to THz.7 Therefore,
the implementation of all-graphene photo-
voltaics, that is, a device in which both
the active area and electrodes are made
of graphene materials, could be able to

harvest energy over the whole sun light
spectrum, while offering unique properties
such as ultralight weight (i.e., graphene is
just one atom thick), mechanical flexibility,
and optical transparency. Therefore, under-
standing the optoelectronic properties of
graphene-based heterostructures is the first
step for exploiting the full potential of this
carbon material in flexible and transparent
photovoltaic devices.
Previous optoelectronic studies on graph-

ene devices have shown that the photo-
thermoelectric effect is at the origin of the
measured photovoltage in graphene p�n
junctions and in single-bilayer interfaces.8�10

On the other hand, the photovoltage mea-
sured at the graphene�metal interface is
due to a built-in electric field near the con-
tact as a result of charge transfer from the
metal contact to the graphene.11�15 These
graphene hybrid structures are at the core
of a new generation of ultrafast photo-
detectorswith a remarkable high bandwidth
(500 GHz), zero source-drain bias (hence
zero dark current) operation, and good
internal quantum efficiency.13 However,
these devices still employ opaque metallic
nanostructures which would introduce sig-
nificant haze caused by light scattering16,17

when used in smart windows and mirrors.
The leap to all-graphene structures which
have a high transparency would enable
the development of a new generation of
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ABSTRACT We investigate the optoelectronic properties of novel graphene/FeCl3-intercalated

few-layer graphene (FeCl3�FLG, dubbed graphexeter) heterostructures using photovoltage

spectroscopy. We observe a prominent photovoltage signal generated at the graphene/FeCl3�FLG

and graphene/Au interfaces, whereas the photovoltage at the FeCl3�FLG/Au interface is negligible.

The sign of the photovoltage changes upon sweeping the chemical potential of the pristine

graphene through the charge neutrality point, and we show that this is due to the photothermo-

electric effect. Our results are a first step toward all-graphene-based photodetectors and

photovoltaics.
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transparent photovoltaic devices which do not suffer
from haze.
Here we study the photovoltage generated in novel

all-graphene devices based on FeCl3-intercalated few-
layer graphene18 (FeCl3�FLG, dubbed graphexeter)
and pristine graphene. The FeCl3 intercalation is known
to dope graphene to record high charge carrier den-
sities (up to ≈9 � 1014 cm�2),18 and it drops the room
temperature square resistance of graphene to just
a few ohms,18 making this material the best transpar-
ent conductor. At the interface between FeCl3�FLG/
graphene, we observe a dominant photovoltage com-
parable to the signal measured at the graphene/Au
interface. We observe a sign reversal of the photo-
voltage upon sweeping the chemical potential of the
pristine FLG through the charge neutrality point, and
we show that this is due to the photothermoelectric
effect. Our results demonstrate that FeCl3�FLG can
replace expensive and opaque metals in photovoltaic
architectures, making these structures mechanically
flexible and transparent.
The device is fabricated as follows: pristine few-layer

graphene is first deposited by mechanical exfoliation
onto heavily doped Si/SiO2 substrate. Raman spectros-
copy and optical contrast are used to determine the
number of graphene layers as well as their stacking
order (see Table 1 and Supporting Information for a
summary of the key device parameters). The intercala-
tion with ferric chloride is performed at 360 �C at 2 �
10�4 Torr for 7.5 h following the procedure described
by Khrapach et al.18 (also see Methods). During this
process, ferric chloride molecules penetrate between
the layers of FLG and heavily p-dope it to record high
levels of≈9� 1014 cm�2. Subsequently, a pristine FLG
flake is transferred over the FeCl3�FLG flake following
the methods described in refs 19 and 20. Independent
multiple electric contacts made by Cr/Au (5 nm/70 nm)
to the bottom FeCl3�FLG and top FLG allow the
characterization of these novel heterostructures (see
Figures 1 and 2a).
Figure 1 shows the schematic of the final device

along with the measurement setup. The FeCl3�FLG
flake is kept on the ground, while a small dc bias
of 0.1 mV is applied to the pristine FLG flake. The
graphene photodetector is then illuminated by a
532 nm HeNe laser focused by using a 100� objective
to 1.5 μm spot size at a power of 8.2 μW. The beam
is chopped at 370 Hz, and the chopper is used as
reference to a lock-in amplifier which measures the
photovoltage. The heavily doped Si substrate acts as a

TABLE 1. Summary of the Device Parameters with Num-

ber of Layers (N) andMobility (μ) Expressed in cm2V�1 s�1

Calculated at a Carrier Concentration of 4 � 1012 cm�2

device name NFeCl3�FLG NFLG μFeCl3�FLG μFLG

D1 3 3 ≈1000 7100

Figure 1. (a) Schematic of the device design and the experi-
mental setup for photovoltage spectroscopy. (b) Crystal
structure for fully intercalated FeCl3�FLG and for FLGflakes.

Figure 2. (a) Optical microscope images of a typical device
along with the Raman intensity maps for the peaks occur-
ring at 1580 and 1610 cm�1 (maximum signal is in red, and
zero is in blue in arbitrary units). (b) Plot of the Raman
scattering spectrum for the pristine FLG (blue) and the
heavily doped FeCl3�FLG (red). The plot in (c) is a graph
of resistance versus back-gate voltage for FeCL3�FLG (red)
and pristine FLG (blue) for device D2 measured at room
temperature and zero bias (see Supporting Information).
The plot in the inset is a linear scale plot of the resistance
versus back-gate voltage for the pristine FLG. (d) Tempera-
ture dependence of the zero bias resistance for FeCl3 (red)
and pristine FLG (blue) at Vg = 0 V.
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global back-gate which we use to tune the chemical
potential of graphene, whereas the resistivity of the
FeCl3�FLG flake is unaffected by the typical values of
used gate voltage due to the high doping level.18 The
devices aremounted on a scanning stage which allows
one to map the photoresponse of these graphene-
based heterointerfaces in the x�y directions with a
spatial resolution of 1 μm.

RESULTS AND DISCUSSION

To probe the homogeneity of the intercalation, we
employ Raman spectroscopy (see Methods). Figure 2a
shows a map of the Raman G-band for the non-
intercalated and intercalated parts for a typical device.
It is apparent that the pristine FLG shows the well-
known strong Raman intensity at 1580 cm�1 corre-
sponding to the G-band, whereas a strong Raman
intensity at 1610 cm�1 is present over the whole area
of the intercalated FLG, demonstrating the uniformity
of the intercalation process. The upshift of the G-band
to 1612 and 1625 cm�1 has been previously studied
and attributed to charge transfer from FeCl3 to
graphene.18,21 More specifically, the shift of the G-band
to 1612 cm�1 is a signature of a graphene sheet with
only one adjacent FeCl3 layer, whereas the shift to
1625 cm�1 characterizes a graphene sheet sandwiched
between two FeCl3 layers. Figure 2b shows the Raman
G-band for thepristine (blue) and intercalated (red) FLGof
the device. The pristine FLG is lightly doped as indicated
by the Raman G-band appearing at 1583 cm�1.22,23 On
the other hand, the Raman spectrum of the intercalated
FLG shows three shifts of the G-band to 1587, 1608, and
1610 cm�1. These observations suggest that the peak at
1610 cm�1 originates from two graphene layers sand-
wiching one layer of FeCl3,

18,21 whereas the other peaks
are due to doped pristine graphene layers.18 Since the
intercalated flakes which we chose for these experiments
are trilayers, the structure can be understood as a layer of
FeCl3 sandwiched between a graphene monolayer and a
graphene bilayer, as schematically shown in the inset of
Figure 2b.
To further characterize the devices, we study the

electrical transport properties of the independently
contacted pristine FLG and FeCl3�FLG flakes. Electrical
measurements are preformed in constant current
using an excitation current of 100 nA in four-terminal
configuration to avoid the contact resistance at the
interface with metals.24 A summary of the back-
gate and temperature dependence of the resistance
of a typical device is presented in Figure 2c,d. The
FeCl3�FLG shows no gate control of the resistivity
(red curve in Figure 2c), which is typical of heavily
doped graphene. On the other hand, the pristine FLG
(see blue curve in Figure 2c) exhibits the expected
large modulation of resistance as a function of gate
voltage and a maximum resistance at Vg = 40 V for this
specific device. This indicates the presence of residual

p-doping probably caused by FeCl3 molecules present
on the surface of the underlaying FeCl3�FLG. Consis-
tently, we observe that the FeCl3�FLG has a room
temperature resistivity of ≈11 Ω which decreases
upon lowering the temperature down to 9 Ω at 4.2 K
(see Figure 2d). The observed metallic behavior of the
resistivity is consistent with the heavy p-doping of the
system induced by the intercalationwith FeCl3, and it is
contrasted by the typical temperature dependence of
the pristine FLG, which shows increasing resistivity
upon lowering temperature25 (see Figure 2d).
The optoelectronic properties of these graphene-

based hybrid structures are characterized by measur-
ing the photovoltage generated across the pristine
FLG/FeCl3�FLG interface while rastering the laser spot
over the active device area. Figure 3a shows the
photovoltage generated in device D1 as a function of
position of the laser beam (see Supporting Information
for a similar characterization of another device). It is
apparent that there is a strong photovoltage at the Au/
FLG (blue) and FLG/FeCl3�FLG (red) interfaces, while the
photovoltage at the FeCl3�FLG/Au is nearly 0. To under-
stand the origin of the generated photovoltage, we fixed
theposition of the laser beamona specific location of the
interfaces, and by changing the back-gate voltage, we
modulated the chemical potential fromholes to electrons
in the pristine FLG. Figure 3b,c shows the gate depen-
dence of the resistance for the different interfaces found
in the device as indicated in the graph. In particular, for
thepristineflake, the chargeneutrality point (CNP) occurs
at 20 V and the crossover from hole transport to electron
transport can be studied (see Figure 3b,d).
A comparison of the gate dependence (in the range

of �50 V < Vg < 70 V) of the photovoltage for all
interfaces shows striking differences in the measured
signal depending on the interface that is measured
(see Figure 3d,e). More specifically, experimentally, we
find no detectable photovoltage generated at the
Au/FeCl3�FLG (black). This is in contrast to the photo-
voltage generated at the Au/FLG (blue) and FLG/
FeCl3�FLG (red) which is nonzero (up to (30 mV/W),
it is nonmonotonous, it switches sign when the gate
voltage drives the Fermi energy accross the charge
neutrality point, and it decreases monotonously for
very high doping levels. Furthermore, we observe that
the photovoltage generated at the Au/FLG is of com-
parable magnitude to that measured at the FLG/
FeCl3�FLG interface but it has opposite sign, that is,
negative in the hole side and positive in the electron
side. Finally, we note that the photovoltage generated
at graphene/FeCl3�FLG is equivalent or larger than
what has been previously reported in doubly gated
graphene p�n junctions.
The fact that (1) the photovoltage generated at the

Au/FLG (blue) and FLG/FeCl3�FLG (red) is nonzero, (2)
it is nonmonotonous, (3) it switches sign when the
gate voltage drives the Fermi energy across the charge
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neutrality point, and (4) it decreases monotonously for
high doping levels suggests that photothermoelectric
effects are at the origin of the observed signal. Similar
observations have been previously reported in graphene
single-bilayer junctions8 as well as doubly gated graph-
ene p�n junctions,9,10 demonstrating the occurrence
of photothermoelectric effects later supported by
theoretical studies.26 In the photothermoelectric effect,
after the electrons are photoexcited from the valence
band to the conduction band, they form a hot Fermion
distribution by relaxing back to the Fermi level. When
there is a difference in the density of states of the
materials forming the photoactive interface, the carriers
diffuse fromone side to theother of the interface, leading
to a photovoltage.8,9,26,27

If charge transfer was responsible for the measured
photovoltage, the signal should have increased upon
increasing the carrier concentrations as the band
bending increases.26,27 This is in contrast with the
observed decrease of the photovoltage for high dop-
ing of the non-intercalated flake, which is instead
expected for photothermoelectric effects. Finally, in

our devices, we do not expect the contacts to con-
tribute with significant photovoltaic effects since our
interface material is chromium, which is known to
induce a very small band bending in graphene.27�29

Having established that photothermoelectric effect is
at the origin of the observed photovoltage, themeasued
zero photovoltage at the FeCl3�FLG/Au interface implies
that the Seebeck coefficients of FeCl3�FLG are similar
to that of Au. This observation, together with the fact
that the magnitude of the photovoltage measured at
the FLG/Au and FLG/FeCl3�FLG is comparable, demon-
strates that FeCl3�FLG is a good replacement for metals
or local gates in future graphene photodetectors.
The photovoltage generated by the photothermo-

electric effect is Vpv = (S2 � S1)ΔT, where Si is the
Seebeck coefficient of the different materials and ΔT is
the temperaturedifference. TheMott relationgives30�32

S ¼ �π
2k2BT

3e
1
G

dG
dn

dn
dE

(1)

For device D1, the top layer graphene is ABA tri-
layer graphene (see Supporting Information), and we

Figure 3. (a) Color-coded photovoltage spectroscopy for the interfaces of the device highlighted in the optical micrograph
picture. These measurements are taken for Vg = 0 V, 1� 10�4 V source-drain bias and with a laser power of 8.2 μW. The blue
region in the photovoltage maps corresponds to the Au/FLG interface, and the red is the FLG/FeCl3�FLG interface. In these
measurements, the Au contact connected to the FeCl3�FLG flake is grounded while the Au contact connected to the FLG is
the source. The graphs in (b) and (c) show the gate dependence of the resistance for the interfaces A and B. (d,e) Back-gate
dependence of the photovoltagewhen the laser position is located at the Au/FeCl3�FLG (blue), FLG/FeCl3�FLG (red), and the
FeCl3�FLG/Au (black) for the interfaces A and B.
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approximate the Ef(n) dependence to be that of bilayer
graphene where33

Ef ¼ 1
2
((2pvF)

2πnþ2γ21 � 2γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2pvF)

2πnþ γ21

q
)1=2

(2)

Here, γ1 is the interlayer coupling strength, which we
take to be 0.4 eV.34,35 Figure 4a shows the dependence
of the electrical conductance (G) as a function of the

charge density (n), where n is extracted from Vg using
the plane plate capacitor model. Figure 4b shows the
calculated Seebeck coefficient using the measured
G(n) and eqs 1 and 2. The measured photovoltage
has a similar charge density dependence to the See-
beck coefficient, and both signals cross over from
positive to negative at the charge neutrality point
(see Figure 4c). This has to be expected when the
photothermoelectric effects dominate the measured
photovoltage.8�10 In these devices, only the Seebeck
coefficient of the ABA trilayer flake contributes signifi-
cantly to the photovoltage since the Seebeck coeffi-
cient of the FeCl3�FLG is 0 as there is no gate
modulation of the resistivity due to the large density
of states;that is, dG/dn ≈ 0 for our available gate
voltage range. Furthermore, Figure 4b,c shows that the
Seebeck coefficient and the measured photovoltage
are not exactly proportional. This discrepancy can
be attributed to the local differences in the magnitude
of the Seebeck coefficient induced by inhomogeneous
doping of the ABA trilayer graphene flake since the
photovoltage is a probe of the local density of states.8

CONCLUSIONS

In summary, we show that the FeCl3�FLG can
be used as a replacement for metal contacts in graph-
ene photodetectors. The high degree of doping in
FeCl3�FLG makes the resistivity of this material insen-
sitive to a global gate voltage acting on the pristine
graphene; therefore, FeCl3�FLG is an ideal conductive
interconnect material. Our experiments demonstrate
that FeCl3�FLG can replacemetals in a newgeneration
of all-graphene-based photodetectors. In particular, we
demonstrate a maximum photovoltage of ≈0.1 V/W at
the FLG/FeCl3�FLG interface. We attribute the mea-
sured photovoltage to the photothermoelectric effect
with amaximum Seebeck coefficient of 20 μV/K for ABA
trilayer graphene.

METHODS

Intercalation with FeCl3. The intercalation process with FeCl3 is
performed by placing both the anhydrous FeCl3 powder and
the substrates with pristine few-layer graphene in vacuum
(∼10�4 mbar) and at 310 and 350 �C for 7.5 h. A heating rate
of 10 �C/min is used during the warming and cooling of the two
zones.

Raman Spectroscopy. Raman spectra are collected in ambient
air and at room temperature with a Renishaw spectrometer.
An excitation laser with a wavelength of 532 nm, focused to a
spot size of 1.5 μm diameter and a ∼100� objective lens, is
used. To avoid sample damage or laser-induced heating, the
incident power is kept at 5 mW.
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